Algebra Pagez Number Sequence and Patterns

Math 8th Unit 2

SUB-DOMAIN II EXPANSION

AND FACTORIZATION

Exercise 2.4

Definition: A closed sentence is a statement that is either true or false, but not both.

Characteristics:

Sch

Complete: It provides a full idea or statement.

No Variables: It does not contain any placeholders or variables.

Truth Value: It can be evaluated as true or false.

Examples:

"The Earth orbits the Sun." (This is a factual statement that can be verified as true.)

"2 + 2 = 5." (This is a false statement.)

Definition: An open sentence is a statement that contains one or more variables and cannot be evaluated as true or false without assigning values to these variables.

Characteristics:

Variables: Contains placeholders that can be replaced by specific values.

Depends on Values: Truth value depends on the values assigned to the variables.

Incomplete Truth Evaluation: Cannot be evaluated as true or false until variables are defined. **Examples:**

"x + 5 = 10" (The truth value depends on the value of x.)

"A person is happy if they are with friends." (The truth value depends on the context and what defines "happy" and "friends.")

Summary:

Closed Sentences: Complete and have a definite truth value.

Open Sentences: Contain variables and require additional information to determine their truth value.

Q.1: Separate the open and closed sentences.

(i)	3x + 4 = 1	(ii)	$2x^3 - 1 = 6$	(iii)	$5 \times 4 = 20$
(iv)	5y + 7 = y	(v)	10 + 40 = 50	(vi)	72 + 8 = 9

Solution:

	Open sentences	Closed sentences		
(i)	3x + 4 = 1	(iii)	$5 \times 4 = 20$	
(ii)	$2x^3 - 1 = 6$	(v)	10 + 40 = 50	
(iv)	5y + 7 = y	(vi)	72 + 8 = 9	

Q.2: Separate the expressions and equations.

Expression: A combination of numbers, variables, and operators (like +, -, \times , \div) without an equality sign. It represents a value but doesn't assert that two values are equal.

Equation: A statement that asserts the equality of two expressions, using an equality sign (=). It can be true or false depending on the values of the variables.

STUDENTS LEARNING OUTCOMES

Recall the difference between

- Open and close sentences.
- Expression and equation.
- Equation and inequality.

3x + 4 = 1

Expression: 3x + 4 **Equation:** 3x + 4 = 1 $2x^3 - 1 = 6$

Expression: $2x^3 - 1$ **Equation**: $2x^3 - 1 = 6$

Key fact

Expression:			Equatio	on:	
1. It is	one sided.		1.	It is two s	ided.
2. It has no relation symbol.			2.	Its relatio	n symbol is equality (=).
(i)	2x - 1 = 0	(ii)	3x - y + 7	(iii)	x + y = 3
(iv)	$7y^2 - 2y + 3 = 0$	(v)	$x^2 - x - 1 = 0$		(vi) $x = -7$

Solution:

Expression			Equations	
		(i)	2x - 1 = 0 (iii)	x + y = 3
(ii)	3x - y + 7	(iv)	$7y^2 - 2y + 3 = 0$	
		(v)	$x^2 - x - 1 = 0$	

Q.3: Separate the equation and inequalities.

Equation: A statement that asserts the equality of two expressions, using an equality sign (=). It can be true or false depending on the values of the variables.

Inequality: A statement that compares two expressions using inequality signs (>, <, \ge , \le , \ne).

- > Greater Than
- \geq Greater than or equal
- < Less Than
- ≤ Less than or equal
- ≠ is not equal

$$3x + 4 = 1$$

- Equation: 3x + 4 = 1
- Not an Inequality: This is not an inequality because it uses an equality sign.
 x + 5 > 10

Not an Equation: This is an inequality because it uses the greater than sign (>).

i.	3x + 7 > 10	Solution: Inequality
ii.	$2x-5\leq 1$	Solution: inequality
iii.	$x^2 + y + 7$	Solution: Equation
iv.	7x-5>6x	Solution: Inequality
v.	5x = 7	Solution: Equation
vi.	$\frac{10}{3} < 5$	Solution: Inequality

Q.4: Separate the polynomial expressions and expressions that are not polynomials.

Polynomial Expression: An algebraic expression involving a sum of powers in one or more variables multiplied by coefficients. The key features of polynomials are:

• Non-negative integer exponents on variables.

<u>Alg</u>ebra

School Pagez Number Sequence and Patterns

Math 8th Unit 2

- Coefficients are real numbers.
- No variables in the denominator.
- No variables under radical signs.

Non-Polynomial Expression: An expression that does not meet the criteria of a polynomial. This includes:

- Negative or fractional exponents.
- Variables in the denominator.
- Variables under radical signs.
- Other complex functions like trigonometric functions or logarithms.

3x + 4

- **Polynomial Expression**: This is a polynomial. It is a first-degree polynomial (or linear polynomial) because it involves only non-negative integer exponents and has no variables in the denominator or radical signs.
- 2/x + 4
 - Not a Polynomial Expression: This is not a polynomial because it includes a variable in the denominator.

(i)	$x^2 + x - 1$	(ii)	$x^2y + xy^2 + 7$		(iii) $x^{-2} + y + 7$
(iv)	$\frac{x}{y^2} + 1 - \frac{y^2}{x}$	(v)	$x^3 - x^2 + y - 1$	(vi)	$x^4 + x^2 + 5x + \frac{1}{2}$

Solution:

Polynomial expression	Non-Polynomial expressions		
(i) $x^2 + x - 1$ (ii) $x^2y + xy^2 + 7$	(iii) $x^{-2} + y + 7$		
(v) $x^3 - x^2 + y - 1$ (vi) $x^4 + x^2 + 5x + \frac{1}{2}$	(iv) $\frac{x}{y^2} + 1 - \frac{y^2}{x}$		

Q.5: What constants are used in the following expressions?

Constant: A value that does not change. In algebraic expressions, constants are terms without variables and with fixed numerical values.

Combine with Variables: Constants can be combined with variables to form algebraic expressions. For example, in the expression 4x+7, 4 is a constant coefficient of the variable x, and 7 is a constant term.

(i) 7x - 6y + 3z

Solution: 7, -6 and 3 are constants.

(ii) $5x^2 - 3$

Solution: 5 and -3 are constants.

(iii) $8x^2 + 2y + 5$

Solution: 8, 2 and 5 are constants.

(iv) 9y + 3x - 2z

Solution: 9, 3 and 2 are constants.

Q.6: Which the degree of the polynomials given below.

Identify the Polynomial:

Pagez

Sche

• A polynomial is an algebraic expression consisting of terms that are sums or differences of variables raised to non-negative integer powers, multiplied by coefficients.

$3x^2y^3+4xy^2-7x^3+5y-6$

The degree of a term in a polynomial with multiple variables is the sum of the exponents of the variables in that term:

- $3x^2y^3$: The total degree is 2+3=5.
- $4xy^2$: The total degree is 1+2=3.
- $-7x^3$: The total degree is 3+0=3.
- 5y: The total degree is 0+1=1.
- -6: The total degree is 0+0=0.

(i)	<i>x</i> + 1	Solution:	Degree =1
(ii)	$x^2 + x$	Solution	Degree = 2
(iii)	$x^3 - xy + 1$	Solution	Degree = 3
(iv)	$x^2y^2 + x^3 + y^2 - 1$	Solution	Degree = 4

Q.7: Separate the polynomials as linear, quadratic cubic and biquadratic.

Classification by Degree:

• Linear Polynomial: If the highest degree is 1.

Example 1:

P(x)=5x+3

- 1. Identify the Degree:
 - The term 5x has an exponent of 1.
 - The highest degree is 1.
- 2. Classification:
 - \circ $\;$ This is a linear polynomial because the highest degree is 1.
- Quadratic Polynomial: If the highest degree is 2.

Example 2:

 $Q(x)=2x^2+4x+1$

- 1. Identify the Degree:
 - \circ The term 2x²has an exponent of 2.
 - The highest degree is 2.

2. Classification:

Sch

- This is a **quadratic polynomial** because the highest degree is 2.
- Cubic Polynomial: If the highest degree is 3.

 $R(x)=x^3-3x^2+2x-8$

- 1. Identify the Degree:
 - The term x^3 has an exponent of 3.
 - The highest degree is 3.
- 2. Classification:
 - This is a **cubic polynomial** because the highest degree is 3.
- Biquadratic Polynomial: If the highest degree is 4.

Example 4:

 $S(x)=x^4-2x^3+x^2+7$

- 1. Identify the Degree:
 - \circ The term x⁴has an exponent of 4.
 - The highest degree is 4.

2. Classification:

- This is a **biquadratic polynomial** because the highest degree is 4.
- (i) 3x + 1 (ii) $x^2 2$ (iii) $y^2 y$
- (iv) x + y (v) $x^3 x^2 2$ (vi) $x^4 + x^3 + x^2$
- (vii) $x^2y^2 + xy$ (viii) $x^2 + xy + 8$
- (a) Linear (with degree 1) polynomials are:

(i)
$$3x + 1$$
 (iv) $x + y$

(b) Quadratic (with degree 2) polynomials are:

(ii) $x^2 - 2$ (iii) $y^2 - y$ (viii) $x^2 + xy + 8$

(c) Cubic (with degree 3) polynomials is.

(v)
$$x^3 - x^2 - 2$$

- (d) Biquadratic (with degree 4) polynomials are.
 - (vi) $x^4 + x^3 + x^2$ (vii) $x^2y^2 + xy$

Algebra School Pagez Number Sequence and Patterns Math 8th Unit 2

Multiple Choice

1. The degree of the polynomial $x^3 + 4x + 5$ is.					
A 2	B 3	© 4	D 5		
	f a polynomial is the highest ver of x is x^3 , so the degree	-	ne polynomial. Here, the		
2. The polynomial $6x^3$	$-4xy^2 + 7y + 1$ is.				
A Linear polynomial	[®] Quadratic polynomial	© Cubic polynomial	Biquadratic polynomial		
polynomial, the term $6x^3$	f a polynomial is determine has the highest degree, whi	ch is 3. Hence, it is a cubic p			
3. The degree of polyno	$ mial \ 2x^3y^2z + 3x^4y^2z^2 + $	6 <i>xy</i> is.	T		
A 2	B 4	© 6	D 8		
the variables in any single	of a polynomial involving muter. For $2x^2y^2z$, the deg	ree is $3 + 2 + 1 = 6$ for $3x$			
4. A closed sentence is	always.				
A True	^B False	© Open	D Both 'a' and 'b'		
Reason: A closed sentence	e is a mathematical stateme	nt that is always true or alw	vays false.		
5. Which of the followi	ng is an example of an ope	n sentence with two variab	oles?		
(A) $x + 2 = 5$	(B) $2x + y = 7$	x - y = 3	D Both 'b' and 'c'		
-	e is an equation or inequality f the variables. Correct answ	-	d can be true or false		
6. Degree of the polyno	mial $2x^4y^5$ is.				
A 4	B 5	© 7	D 9		
_	olynomial is the sum of the e s the degree of the polynom	-	_		
7. $x^2yz + xy^2z + xy + y^2z + xy + y^2z + xy + y^2z + xy + y^2z + y^2$	1 is example of				
 Polynomial in one variable 	^(B) Polynomials in two variable	© Polynomials in more variable	② All		
Reason: This polynomial involves multiple variables (x, y, and z): Correct answer: Polynomials in more variables					
8. What is the degree o	8. What is the degree of the polynomial $x^3 - 4x^2$ polynomials $(3x + 2)$ and $(2x - 1)$?				
	^(B) $6x^2 + 5x - 2$	ⓒ $6x^2 + x - 2$	(b) $6x^2 - 5x + 2$		
The correct answer is $6x^2 - x + 2$, found by multiplying the polynomials $(3x + 2)$ and $(2x - 1)$.					
9. Polynomial $3y^2$ is.					
(A) Linear	[®] Quadratic	© Cubic	D Biquadratic		
Reason: A quadratic polynomial is of the form $ay^2 + by + c$, where the highest power of the variable (in this case y) is 2. $3y^2$ fits this form.					

Algebra School Pagez Number Sequence and Patterns Math 8th Unit 2

10. Which of the following is a closed sentence?				
(^(B) $x + 4 = 10$	ⓒ $3y - 4 = 10$		
Reason: A closed sentence	is a mathematical statemer	nt that is either true or false	$\frac{12}{4} = 3$ is a true	
	ons involve variables and are		-	
11. The algebraic expres	sion is not polynomials.			
A 13	₿ <i>−x</i>	$\bigcirc \frac{1}{v}$	\bigcirc 5x + 3y	
Reason: A polynomial can denominator.	not have variables in the de	nominator. 1/y is not a poly	nomial because y is in the	
12. The polynomial xy^2z	z ² has variable.			
A 2	® 3	© 4	D 5	
Reason: The polynomial <i>x</i> ₂	$y^2 z^2$ contains three differer	It variables: x, y , and z . The	answer is 3.	
13. The linear polynomia	al is.			
$\bigcirc x^4 + 4$	^(B) $y^3 + y^2$	ⓒ $x^2 + 8$	\bigcirc $x + 2y$	
Reason: A linear polynomial is of degree 1, meaning the highest power of any variable is 1. $x + 2y$ is linear because the highest power of x and y is 1.				
14. The degree of a cubic polynomial is.				
A 1	B 2	© 3	D 4	
Reason: A cubic polynomial is defined as a polynomial of degree 3, meaning the highest power of the variable is 3.				